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SOLVING LINEAR EQUATIONS WITH CONJUGATE GRADIENT 

METHOD ON OPENCL PLATFORMS 

 

 

Abstract 

 

The parallelism in GPUs offers extremely good performance on a lot of high-

performance computing applications. Linear algebra is one of the areas which can 

benefit from GPU potential. Conjugate Gradient (CG) benchmark is a significant 

computation in computing applications. It uses conjugate gradient method that 

offers numerical solutions on specific systems of linear equations. The Conjugate 

Gradient contains a few scalar operations, reduction of sums and a sparse matrix 

vector multiplication. Sparse matrix-vector multiplication is the part where the 

most computation time is spent.  

In this thesis, we present GPU, Conjugate Gradient (CG) Method, Sparse Matrix-

Vector Multiplication (SpMxV) on Compressed Sparse Row (CSR) format, 

OpenMP and OpenCL. The aim of the thesis is parallelization of SpMxV on CSR 

format which is the most costly part of CG and gain some performance by 

running it on GPU.  We use OpenCL that allows writing programs which run 

across heterogeneous platforms such as CPUs, GPUs and other processors. The 

experiments show that SpMxV on a GPU with OpenCL spends less time 

according to SpMxV running on a CPU. Furthermore, OpenMp, which is another 

parallel programming language, is compared to OpenCL. OpenCL is a bit better 

than OpenMP at some points. 
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LİNEER DENKLEMLERİN EŞLENİK GRADYAN METODU İLE OPENCL 

PLATFORMUNDA ÇÖZÜLMESİ 

 

 

Özet 

 

Grafik işlemci ünitesinin paralelleştirilmesi yüksek performanslı işlem gerektiren 

uygulamalarda çok büyük performans sağlar. Lineer cebirde bu tür uygulamalar 

olduğundan dolayı, bu potensiyelden bazı noktalarda yararlanmak gerekir. 

Bilimsel hesaplama ölçümlerinde, en önemli hesaplamalardan biride eşlenik 

gradyan metodudur. Bu metod lineer eşitlik içeren berlirli sistemlerde sayısal 

çözümler sunar. Eşlenik gradyan bir sparse matris-vektör çarpımı, toplama 

indirgemesi ve bir kaç sayısal işlem içerir. Sparse matris-vektör çarpımı en çok 

zaman tüketiminin olduğu kısımdır.            

Bu tezde, Grafik İşlemci Ünitesi (GPU), Eşlenik Gradyan (CG) Metodu, 

Sıkıştırılmış Sparse satırı (CSR) formatında Sparse matris-vektör çarpımı 

(SpMxV) , OpenMP ve OpenCL ele alınmıştır. Bu tezin amacı, Eşlenik gradyan 

metodunun en masraflı kısmı olan sparse matris-vektör çarpımının CSR 

formatında paralelleştirilmesi ve GPU üzerinde çalıştırılarak performans kazancı 

elde edilmesidir. Bu amaçla CPU, GPU gibi farklı işlemciler arası çalışabilen 

programlar yazmaya yarayan OpenCL dili kullanılmıştır. Deneyler GPU üzerinde 

çalışabilen OpenCL dili ile yapılan uygulamanın, CPU üzerinde çalışan 

uygulamaya göre çok daha az zaman harcadığını göstermiştir. Ayrıca bir başka 

paralel programlama dili olan OpenMP ile de karşılaştırılarak; OpenCL ile 

yazılan uygulamanın OpenMP‟ye göre de  bazı noktalarda daha iyi olduğu 

gösterilmiştir.
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Chapter 1 

Introduction 

 

Recently, heterogeneous parallel platforms and the acceleration of processors, 

such as GPUs, FPGAs, and DSPs, have made an indelible impression on high 

performance computing domains. Therefore, parallel programming models that 

achieve both source-code and performance portability for different processors in 

the heterogeneous parallel platforms became more important. 

“OpenCL (Open Computing Language) is a parallel programming model for such 

heterogeneous platforms" [1], [2]. It is an open standard for programming 

heterogeneous multiprocessor platforms. “The applications, which are written in 

OpenCL once, can run on any processor or between mixed processors that 

supports OpenCL”. “It has been increasingly appearing at big companies such as 

Intel, AMD, NVIDIA, and Apple”. Since therefore, it looks “OpenCL is a 

significant standard to support in the future” [3]. 

At many high-performance computing applications, the parallelism offers high 

performance. Since linear algebra indicates such platforms, it can benefit from 

this potential at some points. Conjugate Gradient (GC) benchmark, that offers 

numerical solutions on specific systems of linear equations, is one the most 

significant computational kernels in scientific computing. It includes a SpMxV 

that is the most computation time is spent. Sparse matrix structures have a certain 

importance in computational science. They arise as a result of various 

computational disciplines and present the dominant cost in many iterative 

methods in order to solve large linear systems [4]. 
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In this study, we presented and described a performance solution to Sparse 

Matrix-Vector Multiplication part of Conjugate Gradient method. We preferred 

CSR format that is widely used on SpMxV. The implementation is done on 

OpenCL platform that is a parallel programming model for heterogeneous 

programming devices such as CPUs, GPUs, FPGAs, and DSPs. On GPU 

parallelization, heterogeneous programming library (HPL) [5] is used. 

In this thesis, we implemented three codes to probe the performance efficiency on 

SpMxV. Those codes are run on a single CPU, 8 GPUs with OpenMP with 8 

threads and Tesla GPU with OpenCL. The experiments show that performance on 

a GPU with OpenCL is better than the performance on a CPU. Moreover, 

OpenCL has a bit better performance than OpenMP at some points. 

The thesis is laid out as the following. Chapter 2 presents an overview of GPU 

and its architecture. It starts from the graphic pipeline, and continue with the 

evolution of the GPU and the modern GPU architecture. Chapter 3 presents an 

overview of OpenCL and its architecture. Under OpenCL architecture, we look 

through platform model, execution model, memory model and programming 

model. In chapter 4, we give a briefly overview of OpenMP. In chapter 5, we 

explain Conjugate Gradient Method and make it more understandable. Chapter 6 

presents Sparse Matrix Vector. We consider widely used format of Compressed 

Sparse Row format in this thesis. We explain this format step by step on an 

example. Then we briefly give information about matrix vector multiplication. 

Chapter 7 includes performance comparisons of a single CPU, 8 GPU with 

OpenMP [6], [7], [8] and Tesla GPU with OpenCL. Related Work and 

Conclusion are presented in Chapter 8 and 9 in turn. 
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Chapter 2 

Overview of GPU  

 

“The graphics processing unit (GPU) is one of the integral parts of today‟s 

mainstream computing systems”. “There has been a marked increase on 

performance and capabilities of GPUs for the last ten years”. The today‟s GPUs 

are not only powerful graphic engines but also they are “highly parallel 

programmable” processors [9]. The GPU has an accelerated improvement on both 

programmability and capability. 

GPUs are in use in many fields such as personal computers, embedded systems, 

and work stations. Today‟s GPUs are more efficient by comparing to general-

purpose CPUs on their highly parallel structures. They are able to process of 

“large blocks of data in parallel” [10]. 

The first company that develops the GPU was NVidia Inc. “GeForce 256” GPU, 

“the world's first GPU”, was “capable of processing a minimum of 10 million 

polygons per second” [11].  

 

2.1. GPU Architecture 

A GPU is a heterogeneous chip multi-processor with wide computational sources. 

The recent trend is to subject the programmer to that computation. The GPU has 

improved from fixed featured processors to programmable parallel processors 

over the last few years. 
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Let‟s introduce this evolution under the topics of the “graphics pipeline”, 

evolution of the GPU architecture and the architecture of the modern GPU. 

 

2.1.1. The Graphics Pipeline 

It accepts an input that is some representations of three-dimensional primitives 

and it results 2D raster image as an output. The input might be geometric 

primitives, typically a triangle. Through the many steps, those primitives go 

through some phases and finally created a final picture. Let‟s introduce those 

steps: 

 

Vertex Operations: It includes individual vertices as input primitives. Each 

vertex creates a screen space and each of them is shaded. Each vertex might be 

computed separately. Vertex operations are appropriate for parallel hardware. 

 

Figure 2.1: Vertices 
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Primitive Assembly: It includes grouped vertices in form of triangles. They are 

the essential “hardware supported primitives” in current GPUs. 

 

Figure 2.2 : Primitives (triangles) 

 

Rasterization: It takes an image that is defined in a vector graphics format and 

converts it into a raster image [12]. It specifies the pixel locations of every 

triangle. “Each triangle generates a primitive”. This is because of more than one 

triangle might fit into one another at any point. The color of each point is set from 

different fragments. 

 

Figure 2.3 : Rasterization 

 

 

http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_image
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Fragment Operations: A Fragment is a candidate to become a pixel in the memory 

buffer of a complete frame of data. To determine the final color of each fragment, 

they are shaded. As in the vertex stage, it is able to compute each fragment in 

parallel. The most effortful stage is fragment operation. 

 

Figure 2.4 : Fragment Operations 

 

Composition: In this stage, fragments are formed a result image. This image 

includes only one color per pixel. 

 

Figure 2.5 : Composition 

 

Although fragment and vertex stages were able to configure, they were not able to 

program. 

 

http://en.wikipedia.org/wiki/Fragment_(computer_graphics)
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2.1.2. Evolution of GPU Architecture 

“The fixed-function pipeline” had lack of efficient express on shading and 

lighting operations. The imported point was switching the “fixed-function per-

vertex” and “per-fragment operations” that run on each fragment and vertex. The 

last ten years, this lack of operations has become more capable and flexible. 

Currently, the unified Shader Model 4.0 for fragment and vertex is supported by 

GPUs” [13]. 

¶ Instructions are 32-bit integer 

¶ General purpose and index able registers are combined 

¶ Filtered and unfiltered memory read instructions are separated 

¶ Texture bind points  and sampler state are separated   

¶ Multiple banks of constant buffers are corroborated by shadow map 

   sampling 

GPU architectures have centered upon the programmable parts during the 

evolution. Therefore, recent GPUs are better qualified according to GPUs in the 

past. 

 

2.1.3. Architecture of a Modern GPU 

Let‟s take into account a pipeline of tasks that process a huge amount of data. It 

might be as we see in the most graphic APIs or many other applications. For that 

kind of a pipeline, each successive output task is fed into the next input task. The 

pipeline, within each stage subjects the parallel tasks on applications, computing 

more than one element simultaneously in data parallelism. That means data in 

multiple pipeline stages can be calculated meanwhile. In order to run such a 

pipeline, a CPU should get a group of elements or it might be a single element; 

then perform by starting the first stage in the pipeline and go on with next stages 

http://tureng.com/search/simultaneously
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and so on. The CPU splits the pipeline over time and applies all sources in the 

processor to every stage respectively. 

GPUs have a dissimilar approach according to CPU. A GPU separates the 

processor resources between the different stages. The stage, the processor running 

on, feeds the output into a different part which runs on the next stage.  

That is pretty accomplished in “fixed-function GPUs”. It has two reasons on this 

success. In the first place, for any given stage, the hardware makes use of data 

parallelism at related stage. It processes multiple of elements at one and 

simultaneously. This is because of most of the task-parallel stages were running 

simultaneously and the GPU was able to reach the high compute requirements of 

the graphics pipeline. Second reason is that; for a given task, every stage of 

hardware would be customized. Special-purpose hardware is used for this. The 

result of that, it allows greater compute and efficient area for general-purpose 

solutions. If we think of rasterization stage, it is more effective if it is 

implemented by using “special-purpose hardware”. When we think of vertex and 

fragment programs, “the special purpose fixed function components” could be 

easily replaced by programmable components. However, it does not mean task-

parallel organization is changed. 

The final result was an improved GPU pipeline on many stages. Each of them is 

expedited by using special purpose parallel hardware. While any operation might 

get 20 cycles during CPU pipeline process, it might get thousands of cycles 

during GPU pipeline process. The delay of any of the given operation is long, but, 

the parallelism of data and tasks between stages has high throughput. 
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Figure 2.6 : Architecture of a modern NVIDIA graphics card 

On task-parallel pipeline, the load balancing is the main disadvantage of the 

GPU. The slowest stage determines the GPU performance. It depends on slowest 

stage like any pipeline. If it has a complex vertex problem and a simple fragment 

program, overall throughput will depend on slowest one – the vertex program.  

We can say that the first generation of commodity data-parallel processors is 

Modern GPUs. The highlighted advantages of those data-parallel computing are 

extreme computational capacity and rapid growth curve. The most imported one 

is they outstripped traditional CPUs. So, we can expect some generality and 

enhanced programmability for the future GPU architectures [14]. 
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Chapter 3 

Overview of OpenCL 

 

In all computing domains, heterogeneous parallel computing platforms are 

extending their user base. Those platforms are consisted of varied processors such 

as CPUs, GPUs, FPGAs, and DSPs. Beside the point of hi-performance with 

admissible programming effort, parallel programming models should offer 

portability between different processors.  

“OpenCL (Open Computing Language) is a parallel programming model for such 

heterogeneous platforms” [1], [2]. It is an open standard for programming 

heterogeneous multiprocessor platforms. It allows the programmer to prepare 

his/her application by setting up its computation as kernels. At all levels of 

parallelism, you are free to parallelize the execution of kernel instances by using 

OpenCL compiler. The applications on OpenCL are able to run on any 

processors. They are even able to run between mixed processors. 

According to traditional C programming language, OpenCL provides advanced 

usage of parallelism in hardware constructs. And it is also familiar for the 

programmers who have knowledge of C programming language [3].  

“The goal of OpenCL is to become a preferred language for programming 

platforms with heterogeneous processing devices such as CPUs, GPUs, FPGAs, 

and DSPs”. The reason that OpenCL is a challenging candidate is that it provides 

understandable description of parallel execution on lots of levels. It initializes 

data level parallelism within a single kernel sample for its vector data types. “The 

host API allows expressing the number of instances of kernels executed in 

parallel for the number of work-groups". It also defines the execution platform 

and the compiler as conveniently as possible. 

http://tureng.com/search/challenging
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3.1. OpenCL Architecture 

OpenCL is more than a programming language.  “It is a framework for parallel 

programming”. It also contains “API, libraries and a runtime system” in order to 

corroborate software development. In this section, let‟s introduce the standard 

OpenCL architecture [15] for GP GPUs and GPUs. 

 

Figure 3.1 : OpenCL Architecture 

 

3.1.1. Platform Model 

As it‟s shown in figure 3.2, the model contains a host connected to one or more 

compute devices. When we analyze one compute device, “it is divided into one or 

more compute units (CUs). Each CU is divided into one or more processing 

elements (PEs)”. The execution, transferring data to and from an array of 

Compute Devices is coordinated by the host. The OpenCL platform model does 

not specify exactly what hardware composes a compute device. That is one of the 
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significant strengths of this model. By this way, a compute device may be a CPU 

or a GPU or other processors.  

 

Figure 3.2 : OpenCL Platform Model
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3.1.2. Execution Model 

An OpenCL execution is composed of two sections: a host program and kernels. 

A host program identifies the context for kernels and directs kernels execution, 

and runs on the host. Kernels execute on one compute device or more than one. 

The most importing part of execution model is the kernels execution. When the 

host submits a kernel, an index space is described. The index space that executes 

a kernel is called NDRange. It is an N-dimensional space that includes an N-tuple 

of integers, dimensions and size of the index space. Every point in this is 

executed by the kernel instance. We called the kernel instance as a work-item. It 

obtains a global ID of the work-item. This global ID is defined by the index space 

of the point. Every work-item runs the same code with different execution 

pathway that varies per work-items. One or more than one work-items are 

associated into work-groups. Those groups include index spaces that assigned to 

a unique work-group ID. So, each work-item has a unique local ID within a 

workgroup. 

This execution model can be used at a great variety of programming models. 

 

3.1.3. Memory Model 

In a compute device, there are four memory regions. These are “global memory, 

constant memory, local memory and private memory”.  

Global memory region has access of read and write in all work-groups and 

therefore in all work-items. Constant memory stays as a constant while kernel is 

executing. Local memory region is local to a work-group. It is used to assign 

variables that are portioned out by whole work-items in that work-group. There is 

also a private memory region which is private to a work-item and it means it is 

invisible by other work-items. 
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Table 3.1 : “Memory Region – Allocation and Memory Access Capabilities” 

As shown in table 3.1, Compute device memory has “global and constant 

memory regions” those are participated of all compute units. In order to access to 

those memories, global/constant memory data cache is used. In a computing unit, 

all processing elements share the local memory. “Private memory is private to 

each work-item”. 
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Figure 3.3 : “Conceptual OpenCL device architecture with processing elements 

(PE), compute units and devices. The host is not shown.” 

 

3.1.4. Programming Model 

The OpenCL has three programming models: data parallel, task parallel and 

synchronization of these two models.  

The primary model is data parallel programming model. It uses sequence of 

instructions on memory object elements. OpenCL execution model, with index 

space, describes “the work-items and the data maps on these work-items”. We 

might say that there is an exact match-up between the work-item and a memory 

object element. OpenCL has a hierarchical data parallel model in two 
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ways: explicit model and implicit model. At explicit model, a programmer 

identifies the number of work-items for parallelism and how work-items are 

assigned among work-groups. At implicit model, a programmer defines only the 

total number of work-items and assigning work-items among work-groups is 

done by OpenCL implementation. 

The second model is “task parallel programming model”. It uses a single kernel 

instance that run for any index space independently. A kernel is executed on a CU 

with a single work-item of a work-group. A programmer defines parallelism by 

implementing vector data types on the device, enqueuing native kernels and/or 

multiple tasks.  

The last model is synchronization of data parallel model and task parallel model 

in OpenCL. In this model, “work-items are in a single work-group and commands 

are enqueued to command-queue(s) in a single context”. It uses work-group 

barrier in order to provide concurrence of work-items of a work-group. Work-

groups does not include concurrence. The concurrence of commands are provided 

by command-queue barrier and waiting on an event. 
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Chapter 4 

Overview of OpenMP 

 

OpenMP stands for Open Multi-Processing. “It is an API that is used to direct 

multi-threaded, shared memory parallelism”. The API supports a wide range of 

architectures on C/C++ and Fortran. It allows a portable and scalable model to for 

developers. 

OpenMP includes three primary components: 

1. Directives and pragmas 

2. Runtime library routines 

3. Environment variables 

Directive and pragmas include “control structures, work sharing, synchronization, 

some data scope attributes and orphaning”. Runtime library routines include 

“lock API, control and query routines like number of threads, nested parallelism”. 

At environment variables, it has runtime environments such as schedule type, 

maximum number of threads, throughput mode and nested parallelism.  

OpenMP is being founded on shared memory programming for multiple threads. 

It is a non-automatic programming model, because it offers the developer full 

control over parallelization.  

OpenMP uses the fork-joint model of parallel execution.  
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Figure 4.1 : OpenMP, fork-join model 

An OpenMP program starts with a single master thread. When a group of parallel 

threads (we call them as FORK as shown in figure 4.1) are created, the master 

thread executes respectively until a parallel region is determined. When the 

parallel region is determined, they concur and leave the master thread (we call it 

as JOIN as shown in figure 4.1). 

OpenMP has pragmas. A pragma is a compiler directive and allows the 

programmer to communicate with the compiler. The syntax is as #pragma omp 

<rest of pragma>. Let‟s give an example of OpenMP code by comparing code 

independent iterations. 

Figure 4.2 : for-loop, independent iterations       Figure 4.3 : for-loop, parallelized 

It uses “shared and private” variables. While a shared variable includes the same 

address for every thread; a private variable is not. Private variable of a thread is 

not accessible from another thread. 

In this thesis, we have also implemented SpMxV of Conjugate Gradient by using 

OpenMP. Thus, we are also able to compare two parallel programming models as 

well. 
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Chapter 5 

Conjugate Gradient Method 

 

It solves sparse systems of linear equations iteratively [16]. “It is an iterative 

method, here at, it can be applied to sparse systems” directly, just as Cholesky 

decomposition [17],[18]. That kind of systems frequently comes up with 

numerically solving partial differential equations [19]. 

 

 

 

 

 

 

Figure 5.1 : A comparison of the converge of gradient descent conjugate vector.  

 

On behalf of reducing Q over the line points down gradient; when we reduce Q 

over the hyper lane for all previous search directions, we approximate to the 

solution could be accelerated. The method is based on that idea [20].  We reduce 

Q over  

                                                                     (5.1)

x0 



 

 

20 

in order to determine x
i+1

 . Here p
k
 symbolized the search direction before. 

Furthermore, if we can choose the p
k
 as linearly independent; then the hyper lane 

dimension  

                                             (5.2) 

will grow one dimension. It will be used for each iteration of CG. It is another 

advantage to this approach. When we assume infinite precision arithmetic and 

imply this to the linear system Ax=b, we will obtain the result with N steps at 

worst. Here, N stores the number of unknowns. 

For the solution of Ax=b, let an initial estimate as x
0
 and proceed down a Q-

gradient. At our first search direction, choose 

                                                    (5.3) 

where 

                                           (5.4) 

According to met of steepest descent, we have 

                                          (5.5) 

In the meanwhile, It is significant to take into consideration that 

                                                 (5.6) 

Instead of trying to generate the orthogonality relationship that described above, 

we can use the following mathematical argument. x
1 

is conjugate gradient 

estimate of x
0
. r

1
 is the gradient of Q at x

1
. And, the search direction of 
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is . The orthogonal to search direction at x
1 

is the gradient of Q according 

to calculus. 

In support of the statement above which is about calculus and orthogonality; 

regard the onion layers with surfaces of Q is stable. And conjure up piercing it by 

a skewer. The skewer will get through many layers of the onion as a rule. Then 

touch one of the internal layers tangentially and get through other layers and 

lastly exit. The internal layer inmost is given by Q(x
1
) = x

1
 and r

0
 = p

0
 will be 

the direction of the skewer.  

Let‟s consider the skewered onion and the tending of r
1
 and r

0
 = p

0
. 

The CG estimates by   

                                               (5.7) 

                                               (5.8) 

By considering the equations above, we need to bear in mind two things while 

selecting ai and βi . These are: 

¶ Fill the searching space as iterations increases number, 

¶ Search down Q-gradients. Use conjugate gradient search directions for this 

   purpose. 

As we have learned what p
0
 and a

0
, we can assume x

1
 and r

1
 = b - Ax

1
 are known, 

too. The following step to use the CG will be determining values for a0 and β1. 

Then we will be able to calculate p
1
 and x

2. 
 

At next step, we are searching to reduce Q over the plane:  

                                                            (5.9)
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So it means that the escalating r
2
 will have both both p

0
 and p

1 
as orthogonal.  

In order to set the search direction of p
1
 , we will use the orthogonality condition 

of p
0
 . r

2
 = 0. 

                   (5.10) 

which is zero on the condition  

                                          (5.11) 

Description:  When s.Ac = 0 and then it can be said that the vectors c and s are A-

conjugate. 

According to requirement of p
0
 . r

2
 = 0, the search direction of p

1
 must be A-

conjugate to p
0
. Then we can set β

0
 as 

                                         (5.12) 

implies 

                                       (5.13) 

Now that 

                         (5.14) 

implies 

                             (5.15)
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Then keep going x
1
 to x

2
 according to the search direction that declared by p

1 
=  r

1
 

+ β0p
0
. We determine 

                                       (5.16) 

by this way, we will be complete one step of the CG method. In order to see the 

consecutive iterates are described as follows: 

Conjugate Gradient Algorithm (positive definite, A symmetric) 

Step 0. (initialize)  

         Select x
0
 

         Set  

             i = 0 and imax = max number of iteration to be executed  

              

Step 1: (Start CG iteration)  

            If i < imax, go to Steps 2 - 4  

            If i = imax, terminate and show message "i = imax " 

Step 2: (Apply CG update)  

            Set  
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Step 3: (control of convergence)  

           If || [r
i+1

] || < tolerance, go to Step 5. 

Step 4: (set for following CG update)  

           Set  

              

return Step 2 

Step 5:  

           show message of solution 
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Chapter 6 

Sparse Matrix Vector 

 

Sparse matrix structures arise as a result of various computational disciplines. 

The methods those manipulating them are typically related to the performance of 

many applications. In computational science, sparse matrix-vector multiplication 

(SpMV) operations have a certain importance. “They represent the dominant cost 

in many iterative methods in order to solve large-scale linear systems.” [4] 

We can define a sparse matrix as a matrix populated with zeros initially. The 

recognized data structure for a matrix is a two-dimensional array. Each element 

can be accesses by using indices i and j of represented element aij. Enough 

memory storage for an m×n matrix is shown as (m×n) entries [21]. 

5.1. Compressed Sparse Row Format: 

The sparse matrix storage includes various formats. They all have commonly 

designed for SpMxV. “The compressed sparse rows (CSR) format has problems 

on low performance for the indirect addressing. The reading the elements of 

sparse matrix has a strong impact on the performance”. As a result of this, each 

specific algorithm that computes SpMxV uses a specific architecture of these 

specific storage formats [22]. There are several studies published about this 

problem of SpMxV  [23], [24], [25].  

There are many matrix storage choices such as COO, CSR, CSC, DIAG, ELL and 

HYB (ELL+CSR). During our study, we will focus on the compress sparse 

matrix (CSR).  

http://en.wikipedia.org/wiki/Matrix_(mathematics)
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The idea behind compress sparse matrix is to store three arrays [26]: 

1. Row pointer: array stores the floating point numbers for the nonzero 

elements. 

2. Column index: array stores some integers for the column subscripts for 

corresponding entries of floating point values. 

3. Values: array of integers with the entries that stores the subscript, in the 

array of floating point number, for each row.  

For example, suppose a matrix as below: 

 

¶ Each blocks Ai processes a group of Sj of rows 

¶ Each row is appointed to a group of threads Tk. 

¶ For performance: 

Á Numbers of threads per row are adjusted to minimize waste. 

Á Threads per row are aligned for coalescing 

Á For performance use shared memory groups of 4 threads; and 

texture. 

¶ And take into account 2 blocks, with 2 groups of 4 threads:
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The result shows that there are 8 values those are 1.0, 6.0, 4.0, 8.0, 3.0, 2.0 and 

9.0. Those values are defined with row pointers and grouped column indexes. 

There are 4 rows and it is defined the nonzero columns with their index numbers.  

The example above is solved as row based. It might be solved as column base 

also. 

 

A. Matrix Vector Multiplication: 

The CSR format will be used on sparse matrix-vector multiplication. So, let‟s 

suppose M is stored in CSR format. It uses the arrays of rows, cols and vals as we 

defined as above. Then, the algorithm below can be used to multiply Mx and 

stored it in b: 

 

    Figure 6.1 : Matrix-vector multiplication 

Let‟s assume the number of nonzero is stored in rows[i]. And also assume if we 

are solving a nonsingular linear system, there will be no row of zeroes. So, that 

means although the algorithm is well without this assumption, you can assume no 

row of zeros in this example. 

We form the dot product of the a
th

 row of M with x for iteration a. Because of the 

entries of M other than in vals are zero, we do not worry about any components in 



 

 

30 

row a. Moreover, when the nonzero elements in the a
th

 row of M are stored 

sequential entries of vals. Those run between row[a] and row [a+1]. We do the 

calculation on the a
th

 row with corresponding x by multiplying these elements of 

vals.  

In this thesis, GPU code is parallelized for only sparse matrix vector. And 

heterogeneous programming library (HPL) [5] is used for this purpose. HPL 

allows a novel library-based approach to programming heterogeneous systems 

and supports the user with portability with ease of use. It provides the usual C++ 

control flow structures such as „if‟, „for‟. There are three differences. The names 

of control structures are finish with underscores like „if_‟. The end of blocks must 

be closed with related statement with underscore like „endif_‟. The last difference 

is for_ statement. It includes commas instead of semicolons. 
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Chapter 7 

Performance 

 

This section will illustrate the performance comparisons of our parallelized 

SpMxV on Conjugate Gradient Algorithm by running on a single CPU, 8 GPU 

with OpenMP and Tesla GPU with OpenCL.  

The experiments are performed on a single CPU run with C compiler, Intel 

Xenon 2.13 GHz GPU, compiler with gcc version 4.4.3 with C3 optimization 

running on Ubuntu 2.6.32. Tesla C2050 / 2070 is used with OpenCL. 

The detailed comparison results are shown at table 7.1. CG benchmark test 

numbers are used, and data is generated with random numbers. The sparsity rate 

is %1 per class of data. The comparisons include different classes with their own 

sizes and iterations that run on a single CPU and no GPU with single thread CG, 

8 CPUs with OpenMP with 8 threads and Tesla GPU with OpenCL. The 

implementation with OpenCL has more performance according to others, 

although OpenMP is better for small size of data.  

 

Table 7.1 : Comparison results of CPU, 8 CPUs with OpenMP and Tesla GPU 

with OpenCL
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Figures 7.1 and 7.2 are illustrates general comparison results according to 

execution time in seconds and size. While figure 7.1 includes small size data with 

15 iterations, figure 7.2 includes bigger size with 75 iterations. 

 

Figure 7.1 : CPU x 8 CPU with OpenMP x Tesla GPU with OpenCL (15 iterations) 

 

Figure 7.2 : CPU x 8 CPU with OpenMP x Tesla GPU with OpenCL (75 iterations) 
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The OpenCL implementation running on GPU has more performance than a 

single thread CG on CPU. When the size increases, the difference between 

execution time are scaled up. 8 CPU OpenMP is almost have same execution 

time with OpenCL on GPU. 

 

     Figure 7.3 : CPU x 8 CPU with OpenMP x Tesla GPU with OpenCL (15 

iterations) 

 

     Figure 7.4 : CPU x 8 CPU with OpenMP x Tesla GPU with OpenCL (75 

iterations) 
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Figures 7.5 and 7.6 are illustrates speed up graphs of single CPU versus GPU. 

GPU has more performance according to a single thread CPU. 

 

Figure 7.5 : Single CPU x Tesla GPU with OpenCL (15 iterations) 

 

Figure 7.6: Single CPU x Tesla GPU with OpenCL (75 iterations) 
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Figures 7.5 and 7.6 are illustrates speed up graphs of 8 CPU OpenMP and GPU. 

Although OpenMP has more performance than GPU at lower size of data, at 

point 14000 and further GPU with OpenCL is a bit better. 

 

Figure 7.7: 8 CPU with OpenMP x Tesla GPU with OpenCL (15 iterations) 

 

Figure 7.8: 8 CPU with OpenMP x Tesla GPU with OpenCL (75 iterations) 
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Chapter 8 

Related Works 

 

We profiled the linear equations with conjugate gradient method on OpenCL 

platforms. The most expensive part of the conjugate gradient is the compressed 

sparse row format on sparse matrix vector multiplication. When we searched 

those problems, we faced that SpMV operations have a certain importance on 

large-scale linear systems. There are many studies about it. 

One of the studies on efficient sparse matrix-vector multiplication is Nathan Bell 

and Micheal Garland [4] discussed “how critical sparse matrix-vector 

multiplication to the performance of many applications”. They focused on data 

structures and algorithms for sparse matrix vector-multiplication those are 

efficiently implemented on the CUDA with parallel architecture of the GPU. 

They gave some details of sparse matrix formats and demonstrated several 

efficient implementations in CUDA. Besides, they discussed other optimizations.  

Yeliang Zhang et al. [27] describe the NAS Conjugate Gradient (CG) Benchmark 

as a significant kernel used in order to determine machine performance. 

According to their analysis, the most expensive part is sparse matrix vector 

multiplication on Conjugate Gradient. This operation takes between %95.7 to 

%99.6 of the total execution time. They also discussed other performance 

improvements such as accessing directly to data located in shared memory. 

Another study [2] presents the OpenCL implementations on multi core CPUs and 

a GPU. They used NAS Parallel Benchmarks for this purpose. They also 

compared NPB-OpenCL (OpenCL version of “NAS Parallel Benchmark”) to 

NPB-OpenMP (OpenMP version of “NAS Parallel Benchmark”). 
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Nahid Emad et al [28] have study on sparse matrix-vector product optimization. 

They focused on sparse matrix on CSR format. They studied on an optimization 

technique and apply this to sparse matrix-vector product. They performed their 

experiments on three different machines and compared the results. 

“Accelerating sparse matrix vector multiplication in iterative methods using 

GPU" is another study about this [29]. They considered sparse matrix with a 

vector as a primary operation on linear algebra kernels. They chose an 

appropriate data structure for it and improved the performance of the spmv 

kernels. They also gain %20 improvement on their spmv in the conjugate 

gradient. 

P. Sadayappan et al [30] present improvements “the performance of sparse 

matrix-vector multiplication”. They studied on “single-node” performance of 

spmv on compressed-sparse row format. During their studies, they focused on 

“data locality” and “fine-grained parallelism”. 

There is another study on “understanding the performance of sparse matrix-vector 

multiplication” [31]. In this study, the performance issues used spmv kernel on 

modern micro architectures is discussed. In order to understand SpMxV 

performance better, they performed some experiments on different hardware 

platforms. As a result, they represent useful results about this. 
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Chapter 9 

Conclusion 

 

In this thesis, we have researched the structures of GPU, OpenCL platform, 

Conjugate Gradient Method and Sparse Matrix Vector on CSR format. We have 

given examples in real life and many figures to facilitate to understand. Besides 

the offered method, we have also compared the results on different platforms. 

During the thesis, the most costly part of Conjugate gradient method – sparse 

matrix-vector multiplication is discussed. It is proposed to use CSR format for 

sparse matrix-vector multiplication on OpenCL platform. The GPU 

parallelization is provided by using HPL (heterogeneous programming library).   

We have provided 3 different implementation codes of conjugate gradient. These 

are running on a single CPU without GPU and with a single thread CG, running 

on 8 CPUs with OpenMP (includes 8 threads) and the proposed implementation 

running on Tesla GPU with OpenCL and parallelization of GPU with HPL. 

We evaluated the performance and scalability of proposed method by comparing 

the others. While proposed implementation provides huge amount of performance 

according to a single CPU, it has an increasing performance on OpenMP in direct 

proportion to data size. 

 

 

 

 

 

http://tureng.com/search/in%20direct%20proportion%20to
http://tureng.com/search/in%20direct%20proportion%20to
http://tureng.com/search/in%20direct%20proportion%20to
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